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[1] Near-real-time estimates of biomass burning emissions are crucial for air quality
monitoring and forecasting. We present here the first near-real-time global biomass
burning emission product from geostationary satellites (GBBEP-Geo) produced from
satellite-derived fire radiative power (FRP) for individual fire pixels. Specifically, the FRP
is retrieved using WF_ABBA V65 (wildfire automated biomass burning algorithm) from a
network of multiple geostationary satellites. The network consists of two Geostationary
Operational Environmental Satellites (GOES) which are operated by the National Oceanic
and Atmospheric Administration, the Meteosat second-generation satellites (Meteosat-09)
operated by the European Organisation for the Exploitation of Meteorological Satellites,
and the Multifunctional Transport Satellite (MTSAT) operated by the Japan Meteorological
Agency. These satellites observe wildfires at an interval of 15–30 min. Because of the
impacts from sensor saturation, cloud cover, and background surface, the FRP values are
generally not continuously observed. The missing observations are simulated by combining
the available instantaneous FRP observations within a day and a set of representative
climatological diurnal patterns of FRP for various ecosystems. Finally, the simulated diurnal
variation in FRP is applied to quantify biomass combustion and emissions in individual fire
pixels with a latency of 1 day. By analyzing global patterns in hourly biomass burning
emissions in 2010, we find that peak fire season varied greatly and that annual wildfires
burned 1.33 � 1012 kg dry mass, released 1.27 � 1010 kg of PM2.5 (particulate mass for
particles with diameter <2.5 mm) and 1.18 � 1011 kg of CO globally (excluding most parts
of boreal Asia, the Middle East, and India because of no coverage from geostationary
satellites). The biomass burning emissions were mostly released from forest and savanna
fires in Africa, South America, and North America. Evaluation of emission result reveals
that the GBBEP-Geo estimates are comparable with other FRP-derived estimates in Africa,
while the results are generally smaller than most of the other global products that were
derived from burned area and fuel loading. However, the daily emissions estimated from
GOES FRP over the United States are generally consistent with those modeled from GOES
burned area and MODIS (Moderate Resolution Imaging Spectroradiometer) fuel loading,
which produces an overall bias of 5.7% and a correlation slope of 0.97 � 0.2. It is expected
that near-real-time hourly emissions from GBBEP-Geo could provide a crucial component
for atmospheric and chemical transport modelers to forecast air quality and weather
conditions.
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1. Introduction

[2] Biomass burning emissions deteriorate air quality and
impact carbon budgets because of the large amount of aero-
sols and trace gases released into the atmosphere [Andreae
and Merlet, 2001; Langenfelds et al., 2002]. For example,
global wildfires burn, on average, 3.7 million km2 of land and
release 2013 million tons of carbon emissions per year,
which is about 22% of global fossil fuel emissions [van der
Werf et al., 2010]. Biomass burning also alters the changes
in hydrologic and ecological environments and modifies
terrestrial carbon sequestration. Such effects are partially
moderated or eliminated with plant regrowth and ecosystem
restoration on decadal time scales. However, biomass burn-
ing has direct and immediate impacts on air quality and
weather conditions which are major environmental risks to
human health. Therefore, the availability of information on
fires and emissions in near real time for air quality modeling
becomes critical.
[3] A large number of research efforts have been devoted

to deriving biomass burning emissions using burned area and
fuel loading on regional to global scales [e.g., Seiler and
Crutzen, 1980; van der Werf et al., 2006; Wiedinmyer
et al., 2006; Zhang et al., 2008; Al-Saadi et al., 2008;
Urbanski et al., 2011]. The first global biomass burning
emissions were estimated using statistical and inventory data
[Seiler and Crutzen, 1980; Hao et al., 1990; Hao and Liu,
1994; Lobert et al., 1999; Galanter et al., 2000; Andreae
and Merlet, 2001]. These data are generally incomplete and
only available for specific time periods and the results are of
high uncertainty. The availability of global burned area pro-
ducts retrieved from satellite data for specific time periods
during past years has improved the estimates of global bio-
mass burning emissions. Particularly, satellite-derived global
burned area products include the MODIS (Moderate Reso-
lution Imaging Spectroradiometer) burn scar product [Roy
et al., 2002], the MODIS active fire-based burned area
[Giglio et al., 2010], the Global Burned Area (GBA) product
derived from SPOT/VEGETATION [Piccolini and Arino,
2000], and the GLOBSCAR (Global Burn SCARs) burned
area produced from the Along Track Scanning Radiometer
(ATSR-2) instrument onboard the ESA ERS-2 satellite in
2000 [Simon et al., 2004]. Correspondingly, several data sets
of global biomass burning emissions have been established
for specific years: (1) monthly emissions at a 0.5� � 0.5�
spatial resolution in 2000 from GLOBSCAR, LPJ-DGVM
(the Lund-Potsdam-Jena Global Dynamic Vegetation model)
and land cover map [Hoelzemann et al., 2004], (2) monthly
0.5� � 0.5� grid emissions in 2000 using burned area from
GLOBSCAR and GBA and fuel loading from the terrestrial
component of the ISAM (Integrated Science Assessment
Model) terrestrial ecosystem mode [Jain et al., 2006],
(3) monthly satellite pixel-scale emissions from burned area
of GBA-2000 data and global fuel loading maps developed
from biomass density data sets for herbaceous and tree-
covered land together with global fractional tree and vege-
tation cover maps [Ito and Penner, 2004], (4) the Global Fire
Emissions Database (GFED3.1) at a monthly temporal res-
olution and a 0.5� � 0.5� spatial resolution from 1997 to
2009 using MODIS active fire data and global biogeochem-
ical modeling [van der Werf et al., 2010], (5) daily and
3 hourly global fire emissions disaggregated from monthly

GFED3 using MODIS active fires and GOES WF_ABBA
fire observations [Mu et al., 2011], and (6) the Fire Inventory
from NCAR (FINNv1) produced using daily MODIS hot
spots from 2005 to 2010 at a spatial resolution of 1 km and
fuel loading assigned to five land cover types [Wiedinmyer
et al., 2011]. These results that were derived from different
model inputs vary substantially and the quality of emission
estimates is difficult to verify. The uncertainty is mainly from
the parameters (burned area, fuel loading, factor of combus-
tion, and factor of emission) used for the estimates of bio-
mass burning emissions. For example, burned areas derived
from field inventory, satellite-based burn scars, and satellite
hot spots differ by a factor of seven in North America and by
2 orders of magnitude across the globe [Boschetti et al., 2004].
[4] Fire radiative power (FRP) has recently emerged as an

alternative approach to estimate biomass burning emissions.
FRP reflects a combination of the fire strength and size and is
related to the rate of biomass burning. Fire radiative energy
(FRE) is time-integrated FRP, and is related to the total
amount of biomass combusted. Thus, it provides a means to
directly measure biomass combustion from satellite data
[Wooster et al., 2003]. Satellites observe fires through the
radiant component of the total energy released from fires,
providing an instantaneous measurement of fire radiance
representing FRP—the rate of FRE release [Kaufman et al.,
1998; Wooster et al., 2003; Ichoku and Kaufman, 2005;
Ichoku et al., 2008]. FRP is a proxy for the rate of con-
sumption of biomass and is a function of area being burned,
fuel loading, and combustion efficiency. Observed FRP
has been successfully used to calculate biomass combusted
from wildfires using SEVIRI (Spinning Enhanced Visible
and Infrared Imager) radiometer onboard the geostationary
Meteosat-8 platform in Africa [Roberts et al., 2005] and
MODIS data in both Africa [Ellicott et al., 2009] and globe
[Kaiser et al., 2009, 2012].
[5] Quantifying global biomass burning emissions gener-

ally rely on fire observations from polar-orbiting satellites.
However, their low overpass frequency limits the application
of emission estimates for atmospheric and chemical transport
models. To serve air quality and weather forecasts, near-
real-time emissions with diurnal variation are required in an
operational process. To achieve this goal, we establish a
system to produce a Global Geostationary Satellite Biomass
Burning Emissions Product (GBBEP-Geo) from FRP with a
latency of 1 day. The FRP is retrieved using WF_ABBA
(wildfire automated biomass burning algorithm) from a net-
work of geostationary satellites consisting of two Geostation-
ary Operation Environmental Satellites (GOES) which are
operated by the National Oceanic and Atmospheric Adminis-
tration (NOAA), the Meteosat second-generation satellites
(Meteosat-09) operated by the European Organization for the
Exploitation of Meteorological Satellites (EUMETSAT), and
the Multi-functional Transport Satellite (MTSAT) operated by
the Japan Meteorological Agency (JMA). The GBBEP-Geo
results are analyzed spatially and temporally, and evaluated
using emission estimates from other products.

2. Methodology

2.1. Modeling Biomass Burning Emissions

[6] Biomass burning emissions are conventionally mod-
eled using four fundamental parameters. These parameters
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are burned area, fuel loading (biomass density), the fraction
of biomass combustion, and the factors of emissions for trace
gases and aerosols. By integrating these parameters, biomass
burning emissions can be estimated using the following for-
mula [Seiler and Crutzen, 1980]:

E ¼ DM � F ¼ A� B� C � F: ð1Þ

In equation (1), E represents emissions from biomass burning
(kg); DM is the dry fuel mass combusted (kg); A is burned
area (km2); B is biomass density (kg/km2); C is the fraction of
biomass consumed during a fire event; and F is the factor of
consumed biomass that is released as trace gases and smoke
particulates. This simple model has been widely applied to
estimate fire emissions in local, regional, and global scales
[e.g., Ito and Penner, 2004; Reid et al., 2004; Wiedinmyer
et al., 2006; van der Werf et al., 2006; Zhang et al., 2008].
The accuracy of the emissions depends strongly on the
quality of fuel loading and burned area estimates, which have
high uncertainties [e.g., Zhang et al., 2008; van der Werf
et al., 2010; French et al., 2011].
[7] Alternatively, Wooster [2002] demonstrated a linear

relationship between fuel consumption and total emitted fire
radiative energy. This is due to the fact that the total amount
of energy released per unit mass of dry fuel fully burned is
weakly dependent on vegetation types and fuel types, which
ranges between 16 and 22MJ/kg [Lobert and Warnatz, 1993;
Whelan, 1995; Trollope et al., 1996; Wooster et al., 2005].
Thus, biomass burning emission is linearly linked to fire
radiative energy in a simple formula [Wooster, 2002]:

E ¼ DM � F ¼ FRE � b � F ¼
Z t2

t1

FRPdt � b � F; ð2Þ

where FRP is fire radiative power (MW); FRE is fire radia-
tive energy (MJ); t1 and t2 are the beginning and ending time
(second) of a fire event; and b is biomass combustion rate
(kg/MJ).
[8] The biomass combustion rate (b) is assumed to be a

constant. It is 0.368 � 0.015 kg/MJ based on field controlled
experiments regardless of the land surface conditions
[Wooster et al., 2005]. This coefficient has been accepted for
the calculation of biomass burning emissions from MODIS
FRP and SEVERI FRP [e.g., Roberts et al., 2009; Ellicott
et al., 2009], and so this value is also adopted in this study.
[9] An emission factor (F) is a representative value that is

used to represent the quantity of a trace gas or aerosol species
released into the atmosphere during a wildfire activity. The
value is a function of fuel type and is expressed as the number
of kilograms of particulate per ton (or metric ton) of material
or fuel. This study assigns the emission factor for each
emitted species (CO and PM2.5) with land cover type
according to values published in literature [e.g., Andreae and
Merlet, 2001; Wiedinmyer et al., 2006]. Specifically, the

emission factors are assigned to five stratified land cover
types: 11.07 g/kg (PM2.5) and 77 g/kg (CO) in forests
and savannas, 5.6 g/kg (PM2.5) and 84 g/kg (CO) in shrub-
lands, 9.5 g/kg (PM2.5) and 90 g/kg (CO) in grasslands, and
5.7 g/kg (PM2.5) and 70 g/kg (CO) in croplands.
[10] As aforementioned, FRE represents the combination

of total burned area and the dry fuel mass combusted (e.g.,
live foliage, branches, dead leaf litter, and woody materials)
in a given time period, which reduces error sources of param-
eter measurements comparing with the approach employing
both burned area and fuel loading in the estimates of bio-
mass burning emissions. Thus, the FRP approach is adopted
to produce GBBEP-Geo product, which is described in the
following section. The results are evaluated against estimates
from equation (1) with good quality data of fuel loading and
burned area over the Unite States [Zhang et al., 2008] and
against other emission products.

2.2. Fire Radiative Power from Geostationary Satellite
Fire Product

[11] Fire radiative power data are retrieved from a set of
geostationary satellites. FRP is theoretically a function of fire
size and fire temperature. It is empirically related to the dif-
ference of brightness temperature between a fire pixel and
ambient background pixels at the middle infrared (MIR)
wave band of satellites [Kaufman et al., 1998]. Further, FRP
is approximated as the difference of MIR spectral radiances
between a fire pixel and ambient background pixels in a
linear form [Wooster et al., 2003]. The latter approach is
adapted by WF_ABBA in the Cooperative Institute for
Meteorological Satellite Studies (CIMSS), University of
Wisconsin [Prins et al., 1998; Weaver et al., 2004]. Partic-
ularly, the WF_ABBA V65 detects instantaneous fires in
subpixels using infrared bands around 3.9 and 10.7 mm from
a network of geostationary satellite instruments that include
SEVIRI on board the Meteosat-9, and Imagers on board both
GOES and MTSAT (Table 1). It then derives instantaneous
FRP from radiances in single MIR [Wooster et al., 2003].
Further, to minimize false fire detections, the WF_ABBA
uses a temporal filter to exclude the fire pixels that are only
detected once within the past 12 h [Schmidt and Prins, 2003].
Note that this filter may remove early satellite fire observa-
tions in an event. The WF_ABBA V65 has been installed in
NOAA OSDPD (the Office of Satellite Data Processing and
Distribution) to operationally produce FRP from geostation-
ary satellites since late 2009 (http://satepsanone.nesdis.noaa.
gov/pub/FIRE/forPo/). The NOAA fire product provides
detailed information of WF_ABBA V65 fire detections. It
includes the time of fire detection, fire location in latitude and
longitude, an instantaneous estimate of FRP, ecosystem type,
and a quality flag. The quality flag is defined as flag 0, fire
pixel detection with good quality; flag 1, saturated fire pixel;
flag 2, cloud-contaminated fire pixel; flag 3, high-probability
fire pixel; flag 4, medium-probability fire pixel; and flag 5,

Table 1. Geostationary Satellites and FRP Detections From WF_ABBA V65

Satellite/Sensor Spatial Coverage Spatial Resolution (Nadir) Observation Frequency

GOES-West and GOES-East Imagers North America and South America 4 km 30 min
Meteosat-9 SEVIRI Africa and Europe 3 km 15 min
MTSAT Imager Asia and Australia 4 km 30 min
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low-probability fire pixel. The ecosystem type in the fire
product is based on USGS (U.S. Geological Survey) Global
Land Cover Characterization (GLCC) data set which was
produced based on 1 km advanced very high resolution
radiometer (AVHRR) data spanning April 1992 through
March 1993 [Brown et al., 1999]. It consists of 100 different
classes. For simplifying analysis in this study, the ecosystem
type is reclassified as forests, savannas, shrublands, grass-
lands, and croplands.
[12] There are two major limitations in the fire data

from WF_ABBA V65. First, the fire detection rate with
good quality is less than 41%, particularly from MTSAT
(Figure 1). Although the FRP is also estimated for fire
detections of medium–high probability, the rate of total FRP
retrieval is about 60%, 27%, and 41% from Meteosat,
MTSAT, and GOES, separately. Second, although geosta-
tionary satellites observe the surface every 15–30 min,
observations of diurnal fires may, to a great extent, be
obstructed by the impact factors including cloud cover, can-
opy cover, heavy fire smoke, heterogeneity of the surface,
large pixel size and view angle of satellites, and weak energy
release from fire pixels [Giglio et al., 2003; Prins and
Menzel, 1992; Roberts et al., 2005; Zhang et al., 2011].
Thus, missing FRP observations cause a great amount of
gaps in the spatial and temporal distributions. As a result,
FRE in a given time period and region is not able to be
directly integrated from satellite-observed FRP. To over-
come these limitations, the diurnal patterns of FRP need to be
reconstructed, which are described in the following section.

2.3. Simulating Diurnal Pattern of FRP

[13] Diurnal variation in FRP data for each individual fire
pixel is simulated using a climatological FRP diurnal pattern.
The reconstructed diurnal pattern provides estimates of
FRP for a large number of instantaneous fires with both poor
detections and nondetections from WF_ABBA V65. To
do this, we adopt the approach that was originally developed
to reconstruct diurnal pattern of fire size [Zhang and
Kondragunta, 2008; Zhang et al., 2011]. First, geolocation
errors in GOES fire data due to jitter are minimized. Basi-
cally, fires observed in two neighboring pixels concurrently
are treated as separate fire pixels. However, if fires are

semicontinuously observed in one pixel with a neighboring
pixel showing sporadic fires within a day, the fires are treated
as the same and clustered into one pixel. In other words, a
neighboring fire pixel is treated as the same pixel as the given
fire pixel if the following conditions are met: (1) the number
of instantaneous fire observations in a given fire pixel is
larger than that in the neighboring pixel within a day and
(2) none of the fire detections in the neighboring pixel is
concurrent with those in the given pixel and the observation
time of both fire pixels is interspersed. In this way, the
number of instantaneous fire detections for the given fire
pixel is the total in both pixels. Of course, this simple
approach does not necessary provide correct geolocation, but
it could improve the estimates of FRE.
[14] Second, both FRP and time (UTC) within a day are

recorded for individual fire pixels. If FRP is observed from
two satellites within a same half hour for a given pixel, the
average value is used. If an instantaneous fire is detected
without FRP calculation, only the time is recorded for the
determination of fire duration.
[15] Third, FRP diurnal pattern is simulated. The algorithm

assumes that the shape of the FRP diurnal pattern is similar in
a given ecosystem and that the diurnal pattern of FRP for a
given fire pixel can be reconstructed by fitting the climato-
logical diurnal curve corresponding to that ecosystem to the
detected fire FRP values. In other words, the magnitude of
the reconstructed FRP for an individual fire pixel is generally
controlled by the actual FRP observations with good quality
although the shape of the diurnal variation can be driven by
climatology. Practically, the climatological diurnal pattern at
a half-hour interval is generated using the average of FRP
values with good quality (flag 0) and with satellite viewing
angle less than 40 degree from 2002 to 2005 in North
America. The climatological FRP is calculated for forests,
savannas, shrubs, grasses, and croplands, separately, after the
observation time is converted from UTC to local solar time.
These FRP data in a half-hourly interval are then smoothed
using Fourier models to remove some spurious values
(Figure 2). The climatological diurnal FRP pattern generated
from GOES fire data is generally flat, which varies between
160 and 220 MW. This indicates that energy emitted from a
fire pixel is similar during a day if a fire occurs. However,

Figure 1. Proportion of fire observations with different quality levels from geostationary satellite data
globally in 2010. Flag0, good quality fire pixel; Flag1, saturated fire pixel; Flag2, cloud-contaminated fire
pixel; Flag3, high-probability fire pixel; Flag4, medium-probability fire pixel; and Flag5, low-probability
fire pixel.
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variation is noticeable in the diurnal pattern. FRP increases
slightly from morning to late afternoon or evening and
decreases gradually during nighttime. The increase of FRP is
relatively earlier in forests, shrublands, and croplands while it
is later in savanna and grasslands. The magnitude in diurnal
variation is largest in shrublands while it is smallest in
savannas. This diurnal pattern is likely associated with diur-
nal variation in fuel moisture, humidity (ambient humidity),
and fire weather conditions [Schroeder and Buck, 1970;
Rothermel and Mutch, 1986; Beck et al., 2001; Cochrane,
2003; Giglio, 2007].
[16] By shifting the climatological diurnal FRP curve for a

given ecosystem, the diurnal FRP of an individual fire pixel
is reconstructed. The offset of shift is determined from the
data pairs of the detected FRP for the given fire pixel and the
corresponding values in the climatological curve using a least
square method. Because fires in a pixel may not last for a
whole day and instantaneous fires are not continuously
detected due to the impacts from cloud cover, smoke, low-
severity fires releasing limited fire energy, and other factors
[Zhang et al., 2011], the fire duration is determined by
assuming that fire could be extended 2 hours prior and post
instantaneous fire detections if the number of the fire detec-
tions (all quality levels) within a day is more than three times.
Otherwise, fire occurrences are based on actual satellite
detections. Finally, total FRE for a given pixel is the integral
of the FRP during the fire period:

FRE ¼
Zte

ts

FRPdt; ð3Þ

where ts is the start time of a fire event and te is the end time
of the fire pixel.
[17] Because the temporal resolution of geostationary

satellites ranges from 15 to 30 min, we set a minimum time
step as 30 min (30� 60 s). This means that we calculate FRE
by assuming that a fire could last for at least a half hour if
there is one FRP observation. The half-hourly FRE is binned
to calculate hourly biomass burning emissions.

[18] In near-real-time monitoring of biomass burning
emissions, we download WF_ABBA V65 fire products auto-
matically from NOAA public ftp site (ftp://140.90.213.161/
FIRE/forPo/). The diurnal pattern of FRP is then simulated
for the previous day (UTC time) based on fire observations
globally for estimating fire emissions. As a result, the
GBBEP-Geo is produced with a latency of 1 day across the
globe.
[19] The applicability of near-real-time estimates in

GBBEP-Geo is demonstrated by analyzing global biomass
burning emissions in 2010. Because pixel size varies across
the globe, the emissions in the individual fire pixels are
resampled to a spatial resolution of 0.25� grid for the inves-
tigation of spatial pattern. Diurnal patterns in hourly emis-
sions are aggregated in local solar time from various regions.
Daily and monthly emissions are the sum of hourly values for
a given region and an ecosystem type, separately. Peak fire
season in a 0.25� grid is calculated by determining the middle
day within a moving 30 day window where maximum 30 day
emission occurs during a year. This way can provide natural
fire calendar instead of human-defined month calendar.

2.4. Assessment of the Estimates of Global Biomass
Burning Emissions

[20] Global estimates of emissions from wildfires are
compared with other models because of the lack of ground
truth data. We evaluate the FRE-based GBBEP-Geo with
the NOAA GOES Biomass Burning Emission Product
(GBBEP), the NASA Quick Fire Emission Data set (QFED),
GOES-R (next generation GOES) fire proxy data, and
Global Fire Emissions Database (GFED) version 3.1.
NOAA GBBEP uses the conventional fire emission model
(equation (1)) developed by Seiler and Crutzen [1980] and
the improved parameterizations to estimate hourly bio-
mass burning emissions across Contiguous United States
(CONUS) [Zhang et al., 2008]. In GBBEP product, fuel
loading is obtained from the MODIS Vegetation Property-
based Fuel System (MVPFS) which was developed from
MODIS percent vegetation cover, leaf area index, and land
cover type data at a spatial resolution of 1 km [Zhang and

Figure 2. Climatological diurnal FRP (average data from 2002 to 2005) fitted using the discrete Fourier
transform model for various ecosystems in North America.
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Kondragunta, 2006]. Fuel combustion efficiency and emis-
sion factor vary with fuel moisture condition [Anderson
et al., 2004], where the weekly fuel moisture category was
retrieved from AVHRR data [Zhang et al., 2008]. Burned
area was simulated using half-hourly fire sizes obtained from
the GOES-East WF_ABBA fire product [Zhang et al., 2008].
We obtain GBBEP PM2.5 in 2010 from NOAA public ftp
site (ftp://satepsanone.nesdis.noaa.gov/EPA/GBBEP/) to eval-
uate our FPR-based GBBEP-Geo results. Note that GBBEP
only uses GOES-East fire detections in emission estimates over
CONUS while GBBEP-Geo combines GOES-East and
GOES-West fire data. To make an appropriate comparison,
we remove fire detections from GOES-W in GBBEP-Geo
and only select the emission estimates from GOES-East.
[21] We also compare our GBBEP-Geo with Quick Fire

Emission Data set Version 1 (QFED v1, http://geos5.org/wiki/
index.php?title=Quick_Fire_Emission_Dataset_%28QFED%
29). QFEDv1, the near-real-time biomass burning emission
system from the NASA Global Modeling and Assimilation
Office, produces daily total of black and organic carbon at a
spatial resolution of 0.25 � 0.3125 degrees, which is derived
using MODIS fire count and FRP products from both Aqua
and Terra satellites. Similar to the approach developed by
Kaiser et al. [2009], cloud effects on FRP observations are
reduced using the proportion of cloud cover. Terra MODIS
FRP andAquaMODIS FRP are then calibrated against Global
Fire Emissions Data version 2 (GFED2) [van der Werf et al.,
2006], separately. This method accounts for the differences
in the fire strengths at the local time of the satellite overpass
and ensures redundancy in case one of the satellites fails. For
the comparison with QFEDv1, the total value of both black
and organic carbon is converted from dry mass in GBBEP-
Geo using a coefficient of 0.009 [Chin et al., 2007].
[22] The third data set used to assess the WF_ABBA FRP-

based biomass burning emissions is the GOES-R fire proxy
simulated at CIRA (Cooperative Institute for Research in the
Atmosphere), Colorado State University. This proxy simu-
lates 4 GOES-R ABI (Advanced Baseline Imager) bands
(2.25 mm, 3.9 mm, 10.35 mm, and 11.2 mm) that include fire
hot spots using a high-resolution Regional Atmospheric
Modeling System (RAMS) model [Grasso et al., 2008;
Hillger et al., 2009]. The artificial fires were laid out in a
regular grid size of 400 m and a temporal resolution of 5 min.
Fire temperature that was artificially set spatially varied from
400�K to 1200�K in 100�K intervals. Fires were set to vary
temporally and weather conditions also changes. These fire
hot spots, which lasted 6 h, were simulated for 4 different fire
events which were detected by MODIS data on 23 October
2007, California, 26 October 2007, California, 5 November
2008, Arkansas, 24 April 2004, Central America. Fire tem-
perature at the 400 m grids was used to calculate FRP. These
simulated FRP values calculated from fire temperature and
fire grid size were also taken as the ground “truth” for eval-
uation our global biomass emission algorithm.
[23] The GOES-R ABI imagery at an approximately 2 � 2

km resolution was simulated using the anticipated point
spread function from the 400 m fires [Grasso et al., 2008;
Hillger et al., 2009; Schmidt et al., 2010]. Based on these
simulated instantaneous radiance, the WF_ABBA was used
to process the detection of fire characteristics. In the
WF_ABBA output, fires may not always be detected and the
fire characteristics may not be provided because of weak fire

emission, saturation, and cloud impacts. Fire detection rate is
larger than 84% for fire pixel with FRP > 75 MW while very
small fires are not detectable. The WF_ABBA FRP is then
used to estimate diurnal FRP variation and PM2.5 emissions
using the GBBEP-Geo algorithm. The results are compared
with simulated ground “truth” after the data pairs are aggre-
gated to a temporal resolution of 1 hour. Because the factors
of converting FRE to biomass burning emissions in current
algorithm are constant for a give fire event, the FRE differ-
ence between proxy data and the estimates from GBBEP-
Geo algorithm represents the quality of biomass burning
emission estimates.
[24] The fourth data set is GFED3.1. GFED3.1 provides

monthly biomass burning emissions from 1997 to 2010 at a
spatial resolution of 0.5� using burned area and fuel loading
[van der Werf et al., 2010]. Basically, biomass burning
emissions were produced from a biogeochemical model
which employed monthly MODIS burned area and active
fires, land cover characteristics, and plant productivity [van
der Werf et al., 2010]. We obtain GFED3.1 data in 2010
from a website (http://www.falw.vu/�gwerf/GFED/GFED3/
emissions/). Monthly DM data are calculated from three
regions for comparing with GBBEP-Geo estimates, which
are South America, North America, and Africa.

3. Results

3.1. Spatial Pattern in Annual Global Biomass Burning
Emissions

[25] Global wildfires release trace gases and aerosol with a
great spatial variability at both the fire pixel and the geo-
graphical grid of 0.25� scales. Figure 3 shows the spatial
pattern in annual biomass burning emissions for dry mass
combustion, PM2.5 emissions, and CO emissions. The bio-
mass burning emissions are large in South America and
Africa while the values are relatively small in Europe and
Asia. In most parts of southern Brazil and Bolivia in South
America, dry mass combusted per grid cell is more than
1.0 � 108 kg and emissions released per grid cell are more
than 1.0 � 106 kg of PM2.5 and 1.0 � 107 kg of CO. Simi-
larly, large emissions in Africa occurred in Angola, Zambia,
Botswana, Zimbabwe, Zaire, Rwanda, Burundi, and southern
Sudan. The largest biomass burning appeared in the bound-
ary between northern Rwanda and eastern Zaire, where fires
consumed 4.3 � 109 kg of DM, and emitted 4.8 � 107 kg of
PM2.5 and 4.2 � 108 kg of CO in a 0.25� grid. However,
emissions are not estimated for most of the regions in India,
the Middle East, and boreal Asia (including Siberia) because
of the lack of coverage from the multiple geostationary
satellites.
[26] Biomass burning emissions vary greatly by continent

and ecosystem. Forest fires dominated in North America
(region A), South America (region B), and Eastern Asia
(region E), which burned forest dry mass of 7.17 � 1010 kg,
1.50 � 1011 kg, and 6.17 � 1010 kg in 2010, separately
(Figure 3 and Table 2). It accounts for 43.6%, 40.7% and
39.5% of total dry mass burned in these corresponding
regions. In contrast, savanna fires burned 4.52� 1011 kg and
1.45 � 1010 kg of dry mass in Africa and Australia, sepa-
rately, which accounts for 76.5% and 75.8% of total dry mass
burned across these regions. In Europe and Western Asia
(region D), the amount of dry mass burned is similar for
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Figure 3
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forests, grasslands, and croplands. Globally, dry mass was
mostly consumed by savanna fires (47.8%), followed by
forest fires (23.5%), shrubland fires (10.1%), cropland fires
(9.0%), and grassland fires (9.7%). This pattern is mainly due
to the large dry mass combustion in Africa (44.6%) and
South America (27.8%).
[27] The spatial pattern and the relative proportion of

emissions in trace gases and aerosols are similar to that of dry
mass consumed (Tables 3 and 4). PM2.5 emissions are 6.1�
109 kg in Africa, 3.4 � 109 kg in South America, 1.4 � 109

kg in Eastern Asia, and 1.4 � 109 kg North America. Simi-
larly, CO emitted is 55.6 � 109 kg and 31.2 � 109 kg in
Africa and South America, separately. Patterns of fire emis-
sions by ecosystem type match the patterns of dry biomass
consumed.

3.2. Seasonal Pattern in Global Biomass
Burning Emissions

[28] The magnitude of biomass burning emissions also
presents distinctively seasonal variation. The seasonal emis-
sions are shown using monthly global PM2.5 emissions
(Figure 4). In North America, the maximum monthly PM2.5
emissions are 3.27� 108 kg in June and 3.35� 108 kg in July,
which are mainly associated with fires in western North
America. In South America, the values are 1.35 � 109 kg in
August and 0.62 � 109 kg in September, which accounts for
about 60% of annual emissions. These large emissions are
mostly from fires in Brazil and Bolivia. In Africa, large
monthly PM2.5 emissions are 7.89 � 107 kg (12.9%) in
December, 8.53 � 108 kg (13.9%) in January, 8.03 � 108 kg
(13.1%) in July, 1.05� 109 kg (17.2%) in August, and 7.51�
108 kg (12.3%) in September. Large emissions in December
and the following January are from Sahelian and sub-Sahelian
region while emissions during July–September are associated
with fires in southern Africa. This difference results in sea-
sonal emissions across Africa showing two distinct peaks.
In Europe and west Asia (region D), monthly emissions are
2.14 � 108 kg (16.1%) in March, 1.38 � 108 kg (10.3%) in
April, 1.63 � 108 kg (12.2%) in August, and 1.37 � 108 kg
(10.2%) in September. The two peaks are likely related to
agricultural fires. In eastern Asia (regions E) and Australia (F),
the largest monthly emissions appear in June, July, and August.
[29] Figure 5 presents detailed variation in daily emission

across various regions. On average, the daily PM2.5 value is
3.78� 106� 4.35� 106 kg in North America, 0.94� 107�

1.39� 107 kg in South America, 1.68� 107� 1.22� 107 kg
in Africa, 3.70 � 106 � 2.43 � 106 kg in Europe and west
Asia (Region D), 6.33� 105� 1.09� 106 kg in eastern Asia,
and 6.49 � 105 � 5.32 � 105 kg in Australia. PM2.5 emis-
sions in South America increase rapidly from late July, reach
the peak in late August with a daily value as large as 4.35 �
107 kg, and decrease in late October. In Africa, the emission
season is long, ranging from late May to late October and
from December to February with the daily emission value
varying from about 3.0 � 107 kg to 6.23 � 107 kg. In North
America, it ranges from May to September with a peak
occurring in late July. The daily peak emission value is
2.23 � 107 kg. Similarly, fire emissions in Asia (Region E)
present a peak in boreal summer with a daily value less than
4.6� 106 kg except for 2 days. In contrast, the seasonality of
fire emissions in Australia is not distinguishable and daily
emissions are generally less than 2.0 � 106 kg.
[30] Figure 6 shows spatial pattern in the timing of peak

fire season occurrence. Although the timing is very complex
on a 0.25� grid, the general pattern is evident. In the agri-
cultural regions over center North America, the timing of
peak emissions occurs during April–May, which is associ-
ated with preplanting periods for fertilizing the soil. Peak
emission timing is during July–August in western North
America because of hot temperature and dry conditions,
during April–May in Florida because of limited precipitation,
during August–September in northern eastern Asia. In Eur-
ope and west Asia, occurrence of peak emission timing
dominates during April–June (agricultural fires according to
ecosystem types) and in July–August (wildfires). Across the
northern tropical savanna climate region (0�–20�N), the peak
emission occurs during November to the following March.
This pattern matches very well to the dry season period
[Zhang et al., 2005]. For example, peak emission presents a
gradient in the Sahelian and sub-Sahelian region, which
varies from late September in north to the following middle
March in southern area. In southern Africa, the peak emission
timing varies from late June in northwest to early October
in southeast. In South America, peak fire season occurs in
January–February in north Andes and August–September in
Amazon Basin. The peak emission timing shifts from August
to the following January from southwest to northeast of
Brazilian Shield. Although fires are limited in Argentina and
Chile, the peak appears in January–March.

Figure 3. Estimates of global biomass burning emissions in a geographical grid of 0.25� for 2010. (top) Annual dry mass
combusted, (middle) PM2.5 emissions, and (bottom) CO emissions. The regions labeled with A, B, C, D, E, and F are used
for further regional analysis and discussion. Note that there is no coverage in parts of high latitudes, the Middle East, and
India.

Table 2. Dry Mass (109 kg) Consumed in Different Regions and Ecosystemsa

Forests Savannas Shrublands Grasslands Croplands Total

North America (A) 71.67 18.89 46.35 8.20 19.17 164.28
South America (B) 150.3 105.3 22.16 72.44 19.28 369.48
Africa (C) 43.96 452.2 40.91 9.43 44.71 591.22
Europe and West Asia (D) 6.59 2.77 3.14 7.54 6.16 26.21
Eastern Asia (E) 61.68 10.06 16.45 32.59 35.24 156.02
Australia (F) 0.752 14.523 3.487 0.005 0.521 19.288
Total 334.952 603.743 132.497 130.205 125.081 1326.5

aThe region labels are described in Figure 3.
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3.3. Diurnal Variation in Biomass Burning Emissions

[31] Distinct diurnal patterns in hourly biomass burning
emissions vary by region (Figure 7). PM2.5 emissions are
mainly released from fires during 8:00–18:00 local solar time
(LST) accounting for 80% of the daily emissions. In Africa,
the diurnal pattern exhibits a normal distribution. The peak
hour occurs around 13:00 with a maximum value of 15% of
the daily total emissions. A similar diurnal pattern appears in
North America with a peak hourly value of 11%. In contrast,
the hourly emissions show a hat shape with a peak hourly
value of about 11% in South America and Asia and Australia,
separately. The largest hourly emission occurs earlier in the
day in Asia and Australia while it does later in South
America. The flat peak is associated with the peak shifts with
land cover types [Giglio, 2007; Zhang and Kondragunta,
2008]. In South America, the peak shifts about 1.5 hours
among different land cover types. Moreover, the proportion
of emissions in grasslands from 11:00 to 15:00 is very simi-
lar, which results in a flat peak. It is likely that herbaceous
vegetation provides finer and lighter fuels that dry out
quickly, which could result in fire ignitions at any time of the
day [Giglio, 2007]. The shift in the diurnal cycle is also likely
influenced by fire spread rates affected by synoptic-scale
meteorological events and weather conditions [French et al.,
2011; Beck and Trevitt, 1989].
[32] Overall, the result of diurnal pattern is comparable

with previous reports [Roberts et al., 2005, 2009; Giglio,
2007; Justice et al., 2002; Zhang and Kondragunta, 2008;
Mu et al., 2011]. Note that the diurnal pattern of total PM2.5
emissions is generally controlled by the number of actual fire
occurrences, which is different from the climatological diurnal
pattern of individual FRP values. The latter is referred to as the
mean FRP value in a given half hour if a fire is to occur.

3.4. Comparisons of GBBEP-Geo With Other
Estimates

[33] Figure 8 presents the PM2.5 comparison between
GBBEP-Geo estimates from FRP and GBBEP product cal-
culated from burned area and fuel loading. The daily

emission values over CONUS are basically distributed along
a 1:1 line although there are a few outliers. The correlation
between these two estimates is statistically significant (P <
0.0001). The root-mean-square error (RMSE) in daily emis-
sions is 4.99 � 105 kg for all of the samples. The linear
regression (at 95% confidence) slope is 0.968 � 0.019 (P <
0.00001), which indicates that there is no obvious biases. The
determination of correlation (R2) reveals that the GBBEP-
Geo explains 88% of the variation in GBBEP. The difference
in annual emissions shows that GBBEP-Geo is 5.7% larger
than GBBEP. This result indicates that the FRP-based
emission amount is overall equivalent to the estimates from
the burned area and fuel loading approach. Because the fire
sources in these two estimates are all from GOES-East, they
have the same omission and commission errors in fire
detections. In other words, this comparison is not necessary
to validate the absolute magnitude of biomass burning
emissions from GBBEP-Geo. Instead, it demonstrates that
the FRP (or FRE) is an effective proxy to replace burned area
and fuel loading for the estimates of biomass burning emis-
sions from wildfires.
[34] Emission estimates from geostationary satellites are

also evaluated by comparing with the total emissions of both
black and organic carbon from QFEDv1 in Africa and South
America (Figure 9). In Africa (around 25�S–5�N), the
monthly emission value is similar in both data sets although
GBBEP-Geo emissions are about 5%, 1%, and 13% larger
than QFEDv1 emissions in July, August, and September,
separately. In contrast, the monthly QFEDv1 emission in
South America (around 35�S–10�N) is about 54%, 75%, and
87% of GBBEP-Geo value in July, August, and September,
separately. Overall, their values during these 3 months are
comparable with a ratio (GBBEP-Geo/QFED) of 1.3 and 1.1
in South America and Africa. This means that these two esti-
mates are strongly comparable, particularly in Africa.
[35] Figure 10 shows the FRE comparison between ground

“truth” of the simulated GOES-R fire proxy data and esti-
mates derived from GBBEP-Geo algorithm. The results
indicate that FRE values are well estimated for small/weak

Table 3. PM2.5 Emissions (109 kg) in Different Regions and Ecosystemsa

Forests Savannas Shrublands Grasslands Croplands Total

North America (A) 0.714 0.188 0.281 0.070 0.099 1.352
South America (B) 1.50 1.05 0.134 0.621 0.099 3.404
Africa (C) 0.487 5.006 0.274 0.090 0.255 6.112
Europe and West Asia (D) 0.073 0.031 0.021 0.072 0.035 0.232
East Asia (E) 0.683 0.111 0.110 0.310 0.201 1.415
Australia (F) 0.008 0.161 0.023 0.00004 0.003 0.196
Total 3.465 6.547 0.843 1.163 0.692 12.711

aThe region labels are described in Figure 3.

Table 4. CO Emissions (109 kg) in Different Regions and Ecosystemsa

Forests Savannas Shrublands Grasslands Croplands Total

North America (A) 6.266 1.652 3.59 0.665 1.211 13.384
South America (B) 13.15 9.217 1.717 5.88 1.219 31.185
Africa (C) 4.265 43.864 3.518 0.849 3.129 55.624
Europe and West Asia (D) 0.639 0.269 0.271 0.679 0.432 2.289
East Asia (E) 5.983 0.976 1.414 2.933 2.467 13.773
Australia (F) 0.073 1.409 0.300 0.0004 0.036 1.819
Total 30.378 57.387 10.81 11.006 8.494 118.074

aThe region labels are described in Figure 3.
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Figure 4. Monthly PM2.5 burning emissions aggregated in a 0.25� grid across the globe in 2010. Note
that there is no coverage in parts of high latitudes, the Middle East, and India.
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fires while the values are underestimated for large/strong
fires. Overall the hourly mean FRE estimated accounts for
90% of the variation in the “truth.”As a whole of the four fire
events, the total FRE estimated from the GBBEP-Geo is
12.4% smaller than “truth.” This FRE difference represents
the quality of biomass burning emissions because the factor
used to convert FRE to emissions in current algorithm is
constant.
[36] Figure 11 indicates that monthly DM in GBBEP-Geo

is significantly correlated with GFED3.1 estimate in Africa
(R2 = 0.89), in South America (R2 = 0.88), and in North
America (R2 = 0.85). However, the magnitude is discrepant.
In African, monthly GBBEP-Geo DM is consistently smaller
than GFEDv3.1 estimate with a factor larger than 2, which
leads to a factor of 3.4 in annual DM. In South America,
GBBEP-Geo DM is smaller than GFEDv3.1 DM fromMay to
October while it is larger during other months. Because the
emission estimates differ greatly in the fire peak season
(August and September) in 2010, which accounts for 85% of

annual emissions in GFEDv3.1 and 57% in GBBEP-Geo, the
annual DM in GBBEP-Geo is smaller than GFEDv3.1 esti-
mate with a factor of 3.8. In North America, GBBEP-Geo DM
is slightly smaller than GFEDv3.1 estimate with a factor of
1.36, which is mainly due to the large difference in June and
July. In contrast, DM is larger in GBBEP-Geo than in
GFEDv3.1 with a factor of 2.1 in the region of temperate
North America and Central America. Similarly, GFED gen-
erally produces relatively lower fire emissions in this region
comparing with other studies [Al-Saadi et al., 2008; Kaiser
et al., 2012].

4. Discussion

[37] The high frequency of fire observations from multiple
geostationary satellites enables us to estimate global biomass
burning emissions in near real time. The operational product
of GBBEP-Geo could meet the needs to provide hourly
emissions in near real time from individual fire pixels for air

Figure 5. Daily PM2.5 emissions estimated from multiple geostationary satellites over the six regions in
2010.
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quality and weather forecasts because fire emissions are one
of the critical inputs into the atmospheric and chemical
transport models [Yang et al., 2011]. Estimates of biomass
burning emissions from diurnal geostationary FRP observa-
tions in GBBEP-Geo greatly simplify conventional model
parameters of burned area and fuel loading. The applicability
of GBBEP-Geo is demonstrated by comparing with NOAA
GBBEP, QFEDv1 estimates, and GOES-R fire proxy
although the uncertainty of emission estimates has yet to be
fully evaluated because reliable in situ data are scarcely
available.
[38] Comparing GBBEP-Geo data set with the available

literature values further improves our understanding of the

challenging in the qualification of fire emissions. The
GBBEP-Geo estimates are generally small compared to
previous studies of global wildfire emissions that are calcu-
lated monthly at a spatial resolution of 0.5� using burned
area, fuel loading and combustion factors [Jain et al., 2006;
Ito and Penner, 2004; Hoelzemann et al., 2004; van der Werf
et al., 2010] (Table 5). In GBBEP-Geo estimates, global DM
(excluding most parts of boreal Asia, the Middle East, and
India) is 1.326 � 1012 kg in 2010. In the region without
geostationary satellite coverage, wildfires are mainly located
in boreal Asia, which burned about 2.56 � 1011 kg DM on
average from 1997 to 2009 [van der Werf et al., 2010]. If
excluding these fire emissions and assuming that the fire

Figure 6. Occurrence of peak time in biomass burning emissions in a 0.25� grid in 2010. The time repre-
sents the middle day of a 30 day window with maximum emissions in a year. The color legend refers to
the day of year (DOY).

Figure 7. Diurnal variability in the PM2.5 emissions derived from multiple geostationary satellites.
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activities in 2010 would be to some content comparable to
those in previous years, GBBEP-Geo estimate turns out to be
about 2–3 times smaller than other estimates [Jain et al.,
2006; Ito and Penner, 2004; Hoelzemann et al., 2004,
van der Werf et al., 2010] (Table 5). Most of the difference
comes from the emission estimates in Africa, where the
GBBEP-Geo estimate is 3.4 times less than those from
GFED3.1 in 2010. In contrast, the differences are relatively
small in other regions. This magnitude of difference is also
true when comparing of GBBEP-Geo PM2.5 emissions with
others [e.g., Wiedinmyer et al., 2011].

[39] GBBEP-Geo estimates, however, present a similar
magnitude of emission estimates to other FRP-based
approaches (Table 5). Using SEVERI FRP, Roberts et al.
[2009] obtained a fuel consumption of 8.55 � 1011 kg
(DM) in Africa between February 2004 and January 2005,
which is about 2.3 times smaller than that from GFEDv3.1
[van der Werf et al., 2010]. Based on MODIS FRP, Ellicott
et al. [2009] calculated an average of 7.16 � 1011 kg DM
burned per year between 2001 and 2007 in Africa, which is
3.5 times less than GFEDv2 [van der Werf et al., 2006] and
3.0 times less than GFEDv3.1 [van der Werf et al., 2010].

Figure 8. Scatterplot of the GBBEP-Geo FRP-based PM2.5 against NOAA GBBEP daily emissions
derived from burned area and fuel loading over CONUS in 2010. The dark line is the ordinary least squares
linear best fit passing through the origin and the gray lines are the 95% confidence intervals on the mean.

Figure 9. Comparison of monthly black and organic carbon estimated from GBBEP-Geo and QFED in
Africa and South America, separately.
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[40] The modeled results using the Seiler and Crutzen
[1980] equation are largely dependent on the input quality
of burned area, fuel loading, and combustion factors [e.g.,
van der Werf et al., 2010; Hoelzemann et al., 2004].
Although global burned area has been greatly improved with
the development of high-resolution satellite data from 500 m
to 1 km [Roy et al., 2008; Plummer et al., 2006; Tansey et al.,
2008; Giglio et al., 2009], the discrepancy among various
satellite-based global products is still very large [Giglio et al.,
2010; Roy and Boschetti, 2009; van der Werf et al., 2010;
Conard et al., 2002; Boschetti et al., 2004]. The difference
could be as large as from 2 to 10 times in some regions

because of the impacts from unburned patches in a fire pixel
and persistent cloud and smoke [Conard et al., 2002;
Boschetti et al., 2004]. Global fuel loading is generally
derived from land cover types and biomass density data
[Ito and Penner, 2004; Jain et al., 2006; Wiedinmyer et al.,
2011], global vegetation model [Hoelzemann et al., 2004],
and global biogeochemical models [van der Werf et al.,
2006]. The related uncertainty could result in a discrepancy
of as large as 4 times [Campbell et al., 2007]. Combustion
factor depends on fuel type and burn severity. The combus-
tion factor for forest wood is about 0.3–0.5 in most models
[e.g., Ito and Penner, 2004; Soja et al., 2004; Wiedinmyer

Figure 10. Comparison of hourly FRE calculated fromWF_ABBA detected from the fire proxy radiance
with fire proxy FRE in the four proxy fire events.

Figure 11. Comparison of DM between GFED3.1 and GBBEP-Geo estimates in 2010.

ZHANG ET AL.: GLOBAL BIOMASS BURNING EMISSIONS D14201D14201

14 of 18



et al., 2006; Jain et al., 2006], which is much larger than
some detailed field calculations [Campbell et al., 2007;
Meigs et al., 2009]. It is likely that previous emission esti-
mates commonly use combustion factor obtained from
high-severity fires for all fire regimes, although low- and
moderate-severity fires account for majority proportion in
large wildfires [Schwind, 2008; Miller et al., 2009; Zhang
et al., 2011].
[41] The FRP algorithm avoids the uncertainty in burned

area, fuel loading, and combustion factor, but the results are
influenced by FRP detection and biomass combustion rate
(b). Although it is not easy to directly validate satellite FRP
measurements, the FRP values detected from GOES Imager
and Meteosat SEVERI have been shown to agree with
MODIS FRP retrievals [Roberts et al., 2005; Xu et al., 2010].
However, at the regional scale SEVIRI typically under-
estimates FRP by up to 40% with respect to MODIS due
primarily to its inability to confidently detect fire pixels
with FRP ≤ 100 MW [Roberts et al., 2005]. GOES FRP is
undetected for many fire pixels having FRP < 30 MW and
so GOES measurements could be on average 17% lower
[Xu et al., 2010].
[42] Moreover, the uncertainty of FRP in the GBBEP-Geo

also comes from the satellite viewing angles. Fire character-
ization detections are based on the proportion of the pixel on
fire. For pixels near the geostationary satellite limb, a larger
fire area is necessary to create the same fire proportion as a
pixel near the subsatellite point. As viewing angle increases,
pixel size increases and the probability of detecting smaller
and less intense fires decreases [Giglio et al., 1999; Freeborn
et al., 2011]. As a result, the minimum detectable FRP
increases toward the large viewing angles. Similar to MODIS
FRE [Freeborn et al., 2011], the viewing angle effect of
geostationary satellites results in the underestimates of actual
fire FRE. This effect is under investigation and will be
included in the next version of GBBEP-Geo product.
[43] Although our simulated diurnal FRP values for a fire

pixel are expected to compensate for fire detections without
FRP calculations and some undetected fires, some uncertain-
ties also exist. The shape of FRP diurnal pattern for individual
fires varies slightly with different regions. Currently the cli-
matological FRP shape generated using GOES fire detections
in North America is applied to globe. After comparing the
climatological pattern in North America with that in Africa
during 2009 and 2010, we found the shape variation could
cause an uncertainty of about 7%.

[44] The biomass combustion rate in FRE also causes
certain uncertainty although it is shown not to vary with fuel
types. Field controlled experiments (29 samples) demon-
strate that the FRE combustion factor is 0.368� 0.015 kg/MJ
regardless the land ecosystem types [Wooster et al., 2005].
However, laboratory-controlled experiments in a combustion
chamber demonstrate that the rate of dry fuels combusted per
FRP unit ranges from 0.24 to 0.78 kg/MJ with an overall
regression rate of 0.453 � 0.068 kg/MJ [Freeborn et al.,
2008]. In GBBEP-Geo, we adopt the coefficient of 0.368
kg/MJ, which is 23% lower than the 0.453 kg/MJ.
[45] The above biomass combustion rate in FRE from

laboratory-controlled experiments differs greatly from that
obtained from other sources. In the GFASv0, the combustion
rate is 1.37 kg/MJ that was obtained following a comparison
of global MODIS FRE to emissions in GFED2 inventory
[Kaiser et al., 2009]. The aerosol optical thickness (AOT)
simulated from FRE-based emissions (GFASv1.0) is lower
than MODIS AOT by a factor of 3.4 [Kaiser et al., 2012].
Similarly, the AOT simulated using MODIS FRE-derived
fire emissions is less than MODIS AOT with factors of 1.8 in
savannah and grasslands, 2.5 in tropical forest and 4.5 in
extratropical forest [Colarco et al., 2011]. This large dis-
crepancy between bottom-up and top-down AOT estimates is
unclear, which is likely caused by various factors that include
the rapid changes of smoke particles with age [Reid et al.,
1998], the uncertainty in climate and atmospheric transport
models, and underestimate of the biomass combustion factor
and FRE.
[46] Moreover, the combustion rate in FRE is considerably

large when comparing MODIS FRE with MODIS smoke
AOT. The comparison indicates a FRE-based emission factor
for total particulate mass (PM) is 0.02–0.06 kg/MJ for boreal
regions, 0.04–0.08 kg/MJ for both tropical forests and savanna
regions, and 0.08–0.1 kg/MJ for Western Russian regions
[Ichoku and Kaufman, 2005]. If the rate of total PM emissions
is converted to burned DM using PM2.5 emission factors in
GFED3.1 [van derWerf et al., 2010] and the ratio between total
PM and PM2.5 [Sofiev et al., 2009], the biomass combustion
rate in FRE roughly ranges from 2 to 12 kg/MJ. However, these
coefficients may be overestimated by about 50% [Ichoku and
Kaufman, 2005]. Similarly, the emission coefficient for total
PM in Europe is 0.035 kg/MJ for forest, 0.018 kg/MJ for
grassland and agriculture, and 0.026 kg/MJ for mixed vegeta-
tion [Sofiev et al., 2009]. These values are roughly associated to
a biomass combustion rate of 1.6–2.2 kg/MJ. These results

Table 5. Comparisons of Annual Dry Mass Combustion (109 kg) From Various Studiesa

Methods Global Africa North America South America
Spatiotemporal
Resolution Year of Fires Reference

Equation (1) 3099–4159 1712–2654 164–405 145–181 month, 0.5� 2000 Jain et al. [2006]
Equation (1) 2797–3814 1824–2705 61–64 176–188 month, 1 km 2000 Ito and Penner [2004]
Equation (1) 2730–4056 NAb NA NA month, 0.5� 2000 Hoelzemann et al. [2004]
Equation (1) 4539 2058 222 1407 month, 0.5� 2010 van der Werf et al. [2010]
Equation (2) NA 855 NA NA day, 1� 2004 Roberts et al. [2009]
Equation (2) NA 716 NA NA month, 0.5� 2001–2007 Ellicott et al. [2009]
Equation (2) 1326c 591 164 369 hour, pixel size 2010 This study

aEquation (1) represents the model based on burned area and biomass density (fuel loading) and equation (2) indicates the FRP method. The range of
estimates in Jain et al. [2006] and Ito and Penner [2004] is the result of two different burned areas used.

bNA: Not available.
cNo coverage for most regions in boreal Asia, the Middle East, and India.
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indicate that the rate of biomass combustion in FRE from sta-
tistical comparisons between various data sets is much larger
than that from laboratory-controlled experiments. We believe
that the factor of converting FRE to biomass burning emis-
sions needs further investigation.
[47] Emission factor is another source of the uncertainty in

the estimates of biomass burning emissions. In regional and
global scales, emission factors are highly aggregated to a few
ecosystem types. Consequently, the values vary with the field
measurements available and the ecosystem types classified
[Akagi et al., 2011; van der Werf et al., 2010; Wiedinmyer
et al., 2006, 2011]. The uncertainty among these studies is
consistent with that from field measurements for many
important species, which is about 20–30% [Andreae and
Merlet, 2001]. However, the emission factors of PM2.5 are
about four times larger in various studies [e.g., van der Werf
et al., 2010; Wiedinmyer et al., 2011] than those conducted
by Urbanski et al. [2011]. Our GBBEP-Geo algorithm cur-
rently uses the factors from the literature [Wiedinmyer et al.,
2006], which is intended to updated using newly available
data [Akagi et al., 2011; Wiedinmyer et al., 2011].
[48] Finally, the GBBEP-Geo does not produce biomass

burning emissions from fires that occur in most regions of the
Middle East, India and boreal Asia because of the lack of
coverage from current geostationary satellites. For this
region, boreal Asia is one of the most important fire regimes
[Soja et al., 2004], which releases 6.4% of global wildfire
emissions [van der Werf et al., 2010]. To overcome this
limitation for investigating global biomass burning emis-
sions, INSAT-3D, a geostationary satellite developed by the
Indian Space Research Organization and expected to be
launched in 2011, is expected to fill the gap.

5. Conclusions

[49] Fire radiative power estimated from multiple geosta-
tionary satellites provides an indispensable tool to calculate
global biomass burning emissions in near real time on an
hourly time scale. This product will significantly contribute
to air quality and weather forecasting. The estimate of bio-
mass burning emissions from FRP avoids using the complex
parameters of fuel loading and burned area. Thus, it is a
robust approach for the global estimates of biomass burning
emissions. High frequent fire observations from geostation-
ary satellites allow us to reconstruct the diurnal pattern in
FRP for individual fire pixels. This increases the number of
observations that otherwise would not be reported due to
cloud/smoke cover.
[50] Note that high uncertainty exists in global biomass

emissions and accurate validation is currently not possible
because of the lack of reliable in situ measurement. Inter-
composition among different products reveals that the FRP-
based GBBEP-Geo estimates are generally smaller than
previous global calculations from burned area and fuel
loading with a factor of 2–3. However, GBBEP-Geo is
comparable with emission estimates from GOES-based
burned area and MODIS-based fuel loadings in the United
States, from MODIS-based FRP, and from SEVERI-based
FRP in Africa. Thus, it is evident that GBBEP-Geo produces
reliable estimates of biomass burning emissions from wild-
fires. Finally, it should be noted that GBBEP-Geo currently

provides limited coverage in high latitudes and no coverage
in most regions across India and parts of boreal Asia.
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